Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2096, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453913

RESUMO

Sophisticated gene circuits built by synthetic biology can enable bacteria to sense their environment and respond predictably. Engineered biosensing bacteria outfitted with such circuits can potentially probe the human gut microbiome to prevent, diagnose, or treat disease. To provide robust biocontainment for engineered bacteria, we devised a Cas9-assisted auxotrophic biocontainment system combining thymidine auxotrophy, an Engineered Riboregulator (ER) for controlled gene expression, and a CRISPR Device (CD). The CD prevents the engineered bacteria from acquiring thyA via horizontal gene transfer, which would disrupt the biocontainment system, and inhibits the spread of genetic elements by killing bacteria harboring the gene cassette. This system tunably controlled gene expression in the human gut commensal bacterium Bacteroides thetaiotaomicron, prevented escape from thymidine auxotrophy, and blocked transgene dissemination. These capabilities were validated in vitro and in vivo. This biocontainment system exemplifies a powerful strategy for bringing genetically engineered microorganisms safely into biomedicine.


Assuntos
Sistemas CRISPR-Cas , Contenção de Riscos Biológicos , Humanos , Sistemas CRISPR-Cas/genética , Engenharia Genética , Bactérias/genética , Timidina
2.
Cell ; 187(5): 1206-1222.e16, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38428395

RESUMO

Plasmids are extrachromosomal genetic elements that often encode fitness-enhancing features. However, many bacteria carry "cryptic" plasmids that do not confer clear beneficial functions. We identified one such cryptic plasmid, pBI143, which is ubiquitous across industrialized gut microbiomes and is 14 times as numerous as crAssphage, currently established as the most abundant extrachromosomal genetic element in the human gut. The majority of mutations in pBI143 accumulate in specific positions across thousands of metagenomes, indicating strong purifying selection. pBI143 is monoclonal in most individuals, likely due to the priority effect of the version first acquired, often from one's mother. pBI143 can transfer between Bacteroidales, and although it does not appear to impact bacterial host fitness in vivo, it can transiently acquire additional genetic content. We identified important practical applications of pBI143, including its use in identifying human fecal contamination and its potential as an alternative approach to track human colonic inflammatory states.


Assuntos
Bactérias , Trato Gastrointestinal , Metagenoma , Plasmídeos , Humanos , Bactérias/genética , Bacteroidetes/genética , Fezes/microbiologia , Plasmídeos/genética
3.
Cell Rep ; 42(10): 113153, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37742185

RESUMO

The increasing prevalence of food allergies has been linked to reduced commensal microbial diversity. In this article, we describe two features of allergy-protective Clostridia that contribute to their beneficial effects. Some Clostridial taxa bear flagella (a ligand for TLR5) and produce indole (a ligand for the aryl hydrocarbon receptor [AhR]). Lysates and flagella from a Clostridia consortium induced interleukin-22 (IL-22) secretion from ileal explants. IL-22 production is abrogated in explants from mice in which TLR5 or MyD88 signaling is deficient either globally or conditionally in CD11c+ antigen-presenting cells. AhR signaling in RORγt+ cells is necessary for the induction of IL-22. Mice deficient in AhR in RORγt+ cells exhibit increased intestinal permeability and are more susceptible to an anaphylactic response to food. Our findings implicate TLR5 and AhR signaling in a molecular mechanism by which commensal Clostridia protect against allergic responses to food.


Assuntos
Hipersensibilidade , Receptor 5 Toll-Like , Animais , Camundongos , Alérgenos , Bactérias , Ligantes , Camundongos Endogâmicos C57BL , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Receptores de Hidrocarboneto Arílico
4.
J Bacteriol ; 205(7): e0012723, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37382533

RESUMO

Techniques by which to genetically manipulate members of the microbiota enable both the evaluation of host-microbe interactions and an avenue by which to monitor and modulate human physiology. Genetic engineering applications have traditionally focused on model gut residents, such as Escherichia coli and lactic acid bacteria. However, emerging efforts by which to develop synthetic biology toolsets for "nonmodel" resident gut microbes could provide an improved foundation for microbiome engineering. As genome engineering tools come online, so too have novel applications for engineered gut microbes. Engineered resident gut bacteria facilitate investigations of the roles of microbes and their metabolites on host health and allow for potential live microbial biotherapeutics. Due to the rapid pace of discovery in this burgeoning field, this minireview highlights advancements in the genetic engineering of all resident gut microbes.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/fisiologia , Bactérias/genética , Engenharia Genética , Interações entre Hospedeiro e Microrganismos
5.
bioRxiv ; 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36993556

RESUMO

Plasmids are extrachromosomal genetic elements that often encode fitness enhancing features. However, many bacteria carry 'cryptic' plasmids that do not confer clear beneficial functions. We identified one such cryptic plasmid, pBI143, which is ubiquitous across industrialized gut microbiomes, and is 14 times as numerous as crAssphage, currently established as the most abundant genetic element in the human gut. The majority of mutations in pBI143 accumulate in specific positions across thousands of metagenomes, indicating strong purifying selection. pBI143 is monoclonal in most individuals, likely due to the priority effect of the version first acquired, often from one's mother. pBI143 can transfer between Bacteroidales and although it does not appear to impact bacterial host fitness in vivo, can transiently acquire additional genetic content. We identified important practical applications of pBI143, including its use in identifying human fecal contamination and its potential as an inexpensive alternative for detecting human colonic inflammatory states.

6.
Cell Host Microbe ; 30(10): 1352-1353, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36228584

RESUMO

Bacteriophage therapy is a promising strategy to treat bacterial infections and sculpt the microbiome. In a recent Cell paper, Federici et al. (2022) demonstrate that a Klebsiella pneumoniae phage cocktail can specifically remove pathobionts from the mouse gut. Safety and persistence of therapeutic phages were shown in a Phase 1 trial.


Assuntos
Infecções Bacterianas , Bacteriófagos , Doenças Inflamatórias Intestinais , Terapia por Fagos , Animais , Infecções Bacterianas/terapia , Bacteriófagos/genética , Ensaios Clínicos Fase I como Assunto , Camundongos
7.
Science ; 377(6606): 660-666, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35926021

RESUMO

The microbiome contributes to the development and maturation of the immune system. In response to commensal bacteria, intestinal CD4+ T lymphocytes differentiate into functional subtypes with regulatory or effector functions. The development of small intestine intraepithelial lymphocytes that coexpress CD4 and CD8αα homodimers (CD4IELs) depends on the microbiota. However, the identity of the microbial antigens recognized by CD4+ T cells that can differentiate into CD4IELs remains unknown. We identified ß-hexosaminidase, a conserved enzyme across commensals of the Bacteroidetes phylum, as a driver of CD4IEL differentiation. In a mouse model of colitis, ß-hexosaminidase-specific lymphocytes protected against intestinal inflammation. Thus, T cells of a single specificity can recognize a variety of abundant commensals and elicit a regulatory immune response at the intestinal mucosa.


Assuntos
Bacteroidetes , Linfócitos T CD4-Positivos , Colite , Mucosa Intestinal , beta-N-Acetil-Hexosaminidases , Animais , Bacteroidetes/enzimologia , Bacteroidetes/imunologia , Linfócitos T CD4-Positivos/imunologia , Antígenos CD8/imunologia , Colite/imunologia , Colite/microbiologia , Modelos Animais de Doenças , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , beta-N-Acetil-Hexosaminidases/imunologia
8.
Biotechnol Prog ; 38(3): e3241, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35092364

RESUMO

The human microbiome has been inextricably linked to multiple facets of human physiology. From an engineering standpoint, the ability to precisely control the composition and activity of the microbiome holds great promise for furthering our understanding of disease etiology and for new avenues of therapeutic and diagnostic agents. While the field of microbiome research is still in its infancy, growing engineering efforts are emerging to enable new studies in the microbiome and to rapidly translate these findings to microbiome-based interventions. At the 3rd International Conference on Microbiome Engineering, leading experts in the field presented state-of-the-art work in microbiome engineering, discussing probiotics, prebiotics, engineered microbes, microbially derived biomolecules, and bacteriophage.


Assuntos
Bacteriófagos , Microbiota , Probióticos , Bacteriófagos/genética , Osso e Ossos/química , Humanos , Microbiota/genética , Prebióticos/análise , Probióticos/uso terapêutico
10.
Cell ; 179(2): 459-469.e9, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585083

RESUMO

The rapid emergence of antibiotic-resistant infections is prompting increased interest in phage-based antimicrobials. However, acquisition of resistance by bacteria is a major issue in the successful development of phage therapies. Through natural evolution and structural modeling, we identified host-range-determining regions (HRDRs) in the T3 phage tail fiber protein and developed a high-throughput strategy to genetically engineer these regions through site-directed mutagenesis. Inspired by antibody specificity engineering, this approach generates deep functional diversity while minimizing disruptions to the overall tail fiber structure, resulting in synthetic "phagebodies." We showed that mutating HRDRs yields phagebodies with altered host-ranges, and select phagebodies enable long-term suppression of bacterial growth in vitro, by preventing resistance appearance, and are functional in vivo using a murine model. We anticipate that this approach may facilitate the creation of next-generation antimicrobials that slow resistance development and could be extended to other viral scaffolds for a broad range of applications.


Assuntos
Bacteriófago T3/genética , Infecções por Escherichia coli/terapia , Escherichia coli/virologia , Terapia por Fagos/métodos , Dermatopatias Bacterianas/terapia , Proteínas da Cauda Viral/genética , Animais , Farmacorresistência Bacteriana , Especificidade de Hospedeiro , Camundongos , Mutagênese Sítio-Dirigida
12.
Science ; 360(6391): 915-918, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29798884

RESUMO

Biomolecular monitoring in the gastrointestinal tract could offer rapid, precise disease detection and management but is impeded by access to the remote and complex environment. Here, we present an ingestible micro-bio-electronic device (IMBED) for in situ biomolecular detection based on environmentally resilient biosensor bacteria and miniaturized luminescence readout electronics that wirelessly communicate with an external device. As a proof of concept, we engineer heme-sensitive probiotic biosensors and demonstrate accurate diagnosis of gastrointestinal bleeding in swine. Additionally, we integrate alternative biosensors to demonstrate modularity and extensibility of the detection platform. IMBEDs enable new opportunities for gastrointestinal biomarker discovery and could transform the management and diagnosis of gastrointestinal disease.


Assuntos
Técnicas Biossensoriais/instrumentação , Gastroenteropatias/diagnóstico , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/fisiopatologia , Monitorização Fisiológica/instrumentação , Probióticos , Animais , Equipamentos e Provisões Elétricas , Gastroenteropatias/microbiologia , Hemorragia Gastrointestinal/diagnóstico , Heme/química , Suínos
14.
Adv Drug Deliv Rev ; 105(Pt A): 44-54, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27158095

RESUMO

The microbial community that lives on and in the human body exerts a major impact on human health, from metabolism to immunity. In order to leverage the close associations between microbes and their host, development of therapeutics targeting the microbiota has surged in recent years. Here, we discuss current additive and subtractive strategies to manipulate the microbiota, focusing on bacteria engineered to produce therapeutic payloads, consortia of natural organisms and selective antimicrobials. Further, we present challenges faced by the community in the development of microbiome therapeutics, including designing microbial therapies that are adapted for specific geographies in the body, stable colonization with microbial therapies, discovery of clinically relevant biosensors, robustness of engineered synthetic gene circuits and addressing safety and biocontainment concerns. Moving forward, collaboration between basic and applied researchers and clinicians to address these challenges will poise the field to herald an age of next-generation, cellular therapies that draw on novel findings in basic research to inform directed augmentation of the human microbiota.


Assuntos
Microbiota , Animais , Anti-Infecciosos/uso terapêutico , Bioengenharia , Humanos , Probióticos/uso terapêutico
15.
Cell Syst ; 1(1): 62-71, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26918244

RESUMO

Engineering commensal organisms for challenging applications, such as modulating the gut ecosystem, is hampered by the lack of genetic parts. Here, we describe promoters, ribosome-binding sites, and inducible systems for use in the commensal bacterium Bacteroides thetaiotaomicron, a prevalent and stable resident of the human gut. We achieve up to 10,000-fold range in constitutive gene expression and 100-fold regulation of gene expression with inducible promoters and use these parts to record DNA-encoded memory in the genome. We use CRISPR interference (CRISPRi) for regulated knockdown of recombinant and endogenous gene expression to alter the metabolic capacity of B. thetaiotaomicron and its resistance to antimicrobial peptides. Finally, we show that inducible CRISPRi and recombinase systems can function in B. thetaiotaomicron colonizing the mouse gut. These results provide a blueprint for engineering new chassis and a resource to engineer Bacteroides for surveillance of or therapeutic delivery to the gut microbiome.

16.
Nat Biotechnol ; 32(11): 1141-5, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25240928

RESUMO

Current antibiotics tend to be broad spectrum, leading to indiscriminate killing of commensal bacteria and accelerated evolution of drug resistance. Here, we use CRISPR-Cas technology to create antimicrobials whose spectrum of activity is chosen by design. RNA-guided nucleases (RGNs) targeting specific DNA sequences are delivered efficiently to microbial populations using bacteriophage or bacteria carrying plasmids transmissible by conjugation. The DNA targets of RGNs can be undesirable genes or polymorphisms, including antibiotic resistance and virulence determinants in carbapenem-resistant Enterobacteriaceae and enterohemorrhagic Escherichia coli. Delivery of RGNs significantly improves survival in a Galleria mellonella infection model. We also show that RGNs enable modulation of complex bacterial populations by selective knockdown of targeted strains based on genetic signatures. RGNs constitute a class of highly discriminatory, customizable antimicrobials that enact selective pressure at the DNA level to reduce the prevalence of undesired genes, minimize off-target effects and enable programmable remodeling of microbiota.


Assuntos
Resistência Microbiana a Medicamentos/genética , Escherichia coli Êntero-Hemorrágica/genética , Marcação de Genes , RNA Guia de Cinetoplastídeos/genética , Ribonucleases/genética , Antibacterianos/uso terapêutico , Anti-Infecciosos/uso terapêutico , Bacteriófagos/genética , Sequência de Bases/genética , Sistemas CRISPR-Cas , Carbapenêmicos/uso terapêutico , Escherichia coli Êntero-Hemorrágica/patogenicidade , Plasmídeos
17.
Curr Opin Microbiol ; 19: 59-69, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24997401

RESUMO

Since their discovery, bacteriophages have contributed enormously to our understanding of molecular biology as model systems. Furthermore, bacteriophages have provided many tools that have advanced the fields of genetic engineering and synthetic biology. Here, we discuss bacteriophage-based technologies and their application to the study of infectious diseases. New strategies for engineering genomes have the potential to accelerate the design of novel phages as therapies, diagnostics, and tools. Though almost a century has elapsed since their discovery, bacteriophages continue to have a major impact on modern biological sciences, especially with the growth of multidrug-resistant bacteria and interest in the microbiome.


Assuntos
Bacteriófagos , Doenças Transmissíveis , Biologia Sintética , Pesquisa/tendências
18.
Cell Microbiol ; 14(8): 1206-18, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22432415

RESUMO

Enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC) are food-borne pathogens that cause severe diarrhoeal disease in humans. Citrobacter rodentium is a related mouse pathogen that serves as a small animal model for EPEC and EHEC infections. EPEC, EHEC and C. rodentium translocate bacterial virulence proteins directly into host cells via a type III secretion system (T3SS). Non-LEE-encoded effector A (NleA) is a T3SS effector that is common to EPEC, EHEC and C. rodentium and is required for bacterial virulence. NleA localizes to the host cell secretory pathway and inhibits vesicle trafficking by interacting with the Sec24 subunit of mammalian coatamer protein II complex (COPII). Mammalian cells express four paralogues of Sec24 (Sec24A-D), which mediate selection of cargo proteins for transport and possess distinct, but overlapping cargo specificities. Here, we show that NleA binds Sec24A-D with two distinct mechanisms. An NleA protein variant with greatly diminished interaction with all Sec24 paralogues does not properly localize, does not inhibit COPII-mediated vesicle budding, and does not confer virulence in the mouse infection model. Together, this work provides strong evidence that the interaction and inhibition of COPII by NleA is an important aspect of EPEC- and EHEC-mediated disease.


Assuntos
Proteínas de Bactérias/metabolismo , Citrobacter rodentium/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/microbiologia , Citrobacter rodentium/metabolismo , Feminino , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Camundongos Endogâmicos C3H , Domínios PDZ , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Transporte Proteico , Via Secretória , Deleção de Sequência , Proteínas de Transporte Vesicular/química , Fatores de Virulência/química , Fatores de Virulência/genética
19.
Cell Microbiol ; 12(1): 31-41, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19712078

RESUMO

Enteropathogenic Escherichia coli (EPEC) is a diarrhoeal pathogen that adheres to epithelial cells of the small intestine and uses a type III secretion system to inject effector proteins into host cells. EPEC infection leads to disruption of host intestinal tight junctions that are important for maintaining intestinal barrier function. This disruption is dependent on the bacterial type III secretion system, as well as the translocated effectors EspF and Map. Here we show that a third type III translocated bacterial effector protein, NleA, is also involved in tight junction disruption during EPEC infection. Using the drug Brefeldin A, we demonstrate that the effect of NleA on tight junction integrity is related to its inhibition of host cell protein trafficking through COPII-dependent pathways. These results suggest that NleA's striking effect on virulence is mediated, at least in part, via its role in disruption of intestinal barrier function.


Assuntos
Escherichia coli Enteropatogênica/fisiologia , Escherichia coli Enteropatogênica/patogenicidade , Proteínas de Escherichia coli/fisiologia , Intestinos/microbiologia , Junções Íntimas/metabolismo , Fatores de Virulência/fisiologia , Virulência/fisiologia , Brefeldina A/farmacologia , Células CACO-2 , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Linhagem Celular Tumoral , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Teste de Complementação Genética , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Microscopia de Fluorescência , Técnicas do Sistema de Duplo-Híbrido , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...